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“A statue crumbling to dust as cracks spread across its surface”

“A squirrel’s bushy tail flicking quickly”

“A portal crackling with arcane magic as it opens”

“A small explosion rapidly expanding and contracting”

“A massive storm forming, with swirling clouds and thunderbolts”

“A motorcycle drifting and swerving in an enchanted forest”

“A white dandelion shifting as seen through a magnifying glass”

“A transparent glass of water with ice cubes gently swirling”

Figure 1. RGBA Video Generation with TransPixar. By introducing LoRA layers into DiT-based text-to-video model with a novel alpha
channel adaptive attention mechanism, our method enables RGBA video generation from text while preserving Text-to-Video quality.

Abstract

Text-to-video generative models have made significant
strides, enabling diverse applications in entertainment, ad-
vertising, and education. However, generating RGBA video,
which includes alpha channels for transparency, remains a
challenge due to limited datasets and the difficulty of adapt-
ing existing models. Alpha channels are crucial for visual
effects (VFX), allowing transparent elements like smoke and
reflections to blend seamlessly into scenes. We introduce
TransPixar, a method to extend pretrained video models for
RGBA generation while retaining the original RGB capa-
bilities. TransPixar leverages a diffusion transformer (DiT)
architecture, incorporating alpha-specific tokens and us-
ing LoRA-based fine-tuning to jointly generate RGB and
alpha channels with high consistency. By optimizing at-
tention mechanisms, TransPixar preserves the strengths of
the original RGB model and achieves strong alignment be-
tween RGB and alpha channels despite limited training
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data. Our approach effectively generates diverse and con-
sistent RGBA videos, advancing the possibilities for VFX
and interactive content creation. The code is available at
https://wileewang.github.io/TransPixar/.

1. Introduction

Text-to-Video generative models have quickly advanced,
achieving impressive results [6, 16, 20, 26, 47, 50, 57, 62,
65]. This progress has enabled various applications, such
as video editing [10, 13, 32, 39, 53, 56], image anima-
tion [2, 14, 15, 38], and motion customization [18, 24, 31,
36, 48, 52, 60]. Diffusion Transformers (DiT) enhance
these models by using self-attention to capture long-range
dependencies [3, 26, 57, 65]. These models are now widely
used in entertainment, advertising, and education, meeting
the demand for customizable, dynamic content. Notably,
Text-to-RGBA (A denotes Alpha channel) video generation
is invaluable for VFX and creative industries. The inclusion
of an alpha channel in RGBA formats allows for transparent
effects, enabling seamless blending of elements like smoke
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and reflections (see Fig. 1). This transparency creates re-
alistic visuals that can integrate smoothly into scenes with-
out modifying the background. Such flexibility is crucial in
gaming, virtual reality (VR), and augmented reality (AR),
where dynamic and interactive content is in high demand.

Currently, no direct solutions exist for RGBA video gen-
eration, which remains a challenging task due to the scarcity
of RGBA video data, with only around 484 videos available
in [29]. This scarcity will significantly limit the diversity
of generated content, resulting in a constrained set of object
types and motion patterns. One feasible solution is to use
video matting [28, 30, 40] to obtain alpha channels from
generated videos. However, these methods are still limited
by the scarcity of RGBA video data and struggle to gen-
eralize to a wider range of objects, as shown in Fig. 2 (b).
Other video segmentation methods, such as SAM-2 [41],
may generalize well to different tasks. However, they can-
not generate alpha channels and are therefore unsuitable
for direct compositing. There have been attempts to gener-
ate RGBA at the image level, such as LayerDiffusion [64].
However, adapting its concept directly to a temporal VAE
used in video generative models remains challenging.

In this paper, we explore how to extend pretrained video
models to generate corresponding alpha channels while re-
taining the original capabilities of pretrained models. Our
goal is to generate content beyond the limitations of the
current RGBA training set. Existing works such as Lo-
tus [19] and Marigold [25] demonstrate that leveraging
pretrained generation model weights significantly enhances
out-of-distribution in dense prediction, hinting at the poten-
tial for predicting alpha channels. However, in the context
of RGBA video generation, these approaches typically re-
quire generating RGB channels first, followed by separate
alpha channel prediction. Consequently, information flows
unidirectionally from RGB to alpha, keeping the two pro-
cesses largely disconnected. Given the limited availability
of RGBA video data, this imbalance results in insufficient
alpha prediction when challenging objects are generated, as
shown in Fig. 2 (c).

In this work, we propose TransPixar, which effec-
tively adapts the pretrained RGB video models to gener-
ate RGB channels and the alpha channel simultaneously.
We leverage state-of-the-art DiT-like video generation mod-
els [26, 57] , and additionally introduce new tokens ap-
pended after text and RGB tokens for generating the alpha
channels. To facilitate convergence, we reinitialize the po-
sitional embeddings for the alpha tokens and introduce a
zero-initialized, learnable domain embedding to distinguish
alpha tokens from RGB tokens. Furthermore, we employ
a LoRA-based fine-tuning scheme [23], applied exclusively
to project alpha tokens into the qkv space, thereby maintain-
ing RGB generation quality. With the proposed approach,
we extend the modality while preserving the original input-

“A dust cloud expanding after 
an explosion, covering the area”

(c) with generative prior (MariGold, Lotus) (d) Ours

(b) w/o generative prior (Video Matting)(a) Generated RGB

Figure 2. Comparison between Generation-Then-Prediction and
our Joint Generation approach. Given the generated RGB in (a),
(b) and (c) show the predicted alpha (top) and the composited re-
sult (bottom). In (d), the top shows the jointly generated alpha.

output structure and relying on the existing attention mech-
anism through LoRA adaptation.

The extended sequence contains text, RGB, and alpha
tokens, with self-attention divided into a 3x3 grouped at-
tention matrix involving interactions like Text-attend-to-
RGB (Text as query, RGB as key) and others. We also
systematically analyze the attention mechanisms for RGBA
generation: 1) Text-attend-to-RGB and RGB-attend-to-
Text. The interaction between text and RGB tokens rep-
resents original model’s generation capabilities. Minimiz-
ing the impact on text and RGB tokens during these at-
tention computation processes can better retain the original
model’s performance; 2) RGB-attend-to-Alpha. We re-
veals a fundamental limitation in conventional methods is
the lack of RGB-attend-to-Alpha attention. This attention
is necessary to refine RGB tokens based on alpha informa-
tion, improving RGB-alpha alignment; 3) Text-attend-to-
Alpha. We remove this attention mechanism to reduce the
risk caused by limited training data, which could degrade
the model’s performance. This removal also enhances the
retention of the model’s original capabilities.

By integrating these techniques, our method achieves di-
verse RGBA generation with limited training data while
maintaining strong RGB-alpha alignment. To summarize,
our contributions are as follows:
• We propose an RGBA video generation framework using

DiT models that requires limited data and training param-
eters, achieving diverse generation with strong alignment.

• We analyze the role of each attention component in the
generation process, optimize their interactions, and intro-
duce necessary modifications to improve RGBA genera-
tion quality.

• Our method is validated through extensive experiments,
demonstrating its effectiveness across a variety of chal-
lenging scenarios.



2. Related Work

Text-to-Video Generation. Early video generation models
were primarily based on Unet-based latent diffusion mod-
els (LDMs) extended from text-to-image models like Stable
Diffusion [42]. For example, AnimateDiff [16] introduced
a temporal attention module to improve temporal consis-
tency across frames. Subsequent video generation mod-
els [4, 6, 7, 47, 62, 63] adopted an alternating approach with
2D spatial and 1D temporal attention, including works like
ModelScope, VideoCrafter, Moonshot, and Show-1.

With advancements in large language models (LLMs)
and the introduction of Sora [3], attention shifted from
Unet architectures to transformer-based architectures (DiT).
DiT-based video generation models, such as Latte [37]
and OpenSora [65], extended the DiT text-to-image (T2I)
model [8] and maintained the 2D and 1D alternating atten-
tion approach, achieving promising results. Recently, DiT-
based video generation has rapidly progressed, achieving
further improvements in quality. Several methods [26, 44,
57] have moved away from the 2D and 1D alternating ap-
proach, instead treating video frames as a single long se-
quence with 3D positional embeddings for encoding. These
approaches also prepend text tokens—processed through a
text encoder—to the video sequence, creating a streamlined
network that relies solely on full self-attention and feed-
forward layers. Our method builds upon these recent open-
source transformer-based video generation models.

Video Matting. A straightforward approach for RGBA
video generation is to extract the alpha channel from gen-
erated RGB content, as done with traditional green screen
keying or learning-based video matting expert models [28–
30]. OmnimatteRF [28] introduces a video matting method
that combines dynamic 2D foreground layers with a 3D
background model, enabling more realistic scene recon-
struction for real-world videos. Robust Video Matting
(RVM) [30] proposes a real-time, high-quality human video
matting method with a recurrent architecture for improved
temporal coherence, achieving state-of-the-art results with-
out auxiliary inputs. Another work presents a high-speed,
high-resolution background replacement technique with
precise alpha matte extraction, supported by the Video-
Matte240K and PhotoMatte13K/85 datasets [29]. Addition-
ally, many image matting methods [5, 27, 51, 58] can be
applied for frame-by-frame matting.

Further, several works [19, 25, 54] in image depth esti-
mation adapt pretrained generation models for prediction
tasks, achieving strong performance that often surpasses
traditional, scratch-trained expert models. Marigold [25]
modifies architectures to create image-conditioned gener-
ation models, while Lotus [19] explores the role of the dif-
fusion process in this context. Although there is currently
no dedicated approach for video matting within video gen-

eration models, we replicate and extend these methods to
evaluate their performance, allowing us to highlight the lim-
itations of prediction-based pipelines for RGBA generation.

Generation beyond RGB. Another category of methods [1,
17, 34, 35, 55, 61, 64] explores expanding generation mod-
els to simultaneously generate additional channels, though
they are not specifically designed for RGBA video genera-
tion. For instance, LayerDiffusion [64] modifies the VAE in
latent diffusion models to decode alpha channels. However,
VAEs typically lack the semantic understanding required
for precise alpha generation, limiting their effectiveness in
complex visual scenarios where texture and contour details
are critical. In contrast, other approaches [1, 34, 35, 61]
modify the denoising model directly to enable joint gener-
ation. Wonder3D [34] uses a domain embedding to control
the model’s generation modality, while methods like Intrin-
sicDiffusion [35] and RGB↔X [61] adapt the UNet’s in-
put and output layers to jointly produce intrinsic modalities.
However, all these methods are designed for image tasks
and rely on UNet architectures. When applied to video gen-
eration, they face limitations in quality and diversity due to
the scarcity of RGBA video data.

3. Method
3.1. Preliminary

We first introduce the open-sourced state-of-the-art DiT-
based video generation models [44, 57]. The core com-
ponents of DiT-based video models are attention modules,
and there are two primary distinctions between these mod-
els and previous approaches. On one hand, unlike previous
models that alternate between 1D temporal attention and 2D
spatial attention [4, 6, 7, 65], current methods typically em-
ploy 3D spatio-temporal attention, allowing them to cap-
ture spatio-temporal dependencies more effectively. On the
other hand, instead of using cross-attention for text condi-
tioning, these models concatenate text tokens xtext with vi-
sual tokens xvideo into a single long sequence. The shape of
video tokens and text tokens are B×L×D and B×Ltext×D,
wher B equals to batch size, Ltext equals to the length of text
tokens, L equals to the length of video tokens and D equals
to the latent dimension of transformer. Full self-attention is
then applied across the combined sequence:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, where

Z : Z ∈ {Q,K,V}
= [Wz:z∈{q,k,v}(xtext); fz:z∈{q,k,v}(xvideo)]

(1)
Here Wt (for t ∈ {q, k, v}) represents the projection

matrixs in the transformer model, and ft (for t ∈ {q, k, v})
represents a combined operation that incorporates both the
projection and positional encoding for visual tokens. There
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Figure 3. Pipeline of TransPixar. Our method is organized as follows: (1) Left: we extend the input of DiT to include new alpha tokens;
(2) Top Center: we initialize alpha tokens with our positional encoding; (3) Bottom Center: we insert a partial LoRA and adjust attention
computation during training and inference.

are two commonly used types of positional encoding. One
is absolute positional encoding formulated as follows:

fz:z∈{q,k,v}(xvideo) := Wz:z∈{q,k,v}(x
m
video + pm), (2)

where p is the positional embedding (e.g., a sinusoidal
function) and m denotes the position of each RGB video
token. Another approach is the Rotary Position Embedding
(RoPE) [43], often used by [44, 57]. This is expressed as

fz:z∈{q,k}(xvideo) := Wz:z∈{q,k}(x
m
video) ◦ eimθ, (3)

where m is the positional index, i is the imaginary unit for
rotation, and θ is the rotation angle.

3.2. Our Approach

To jointly generate RGB and alpha videos, we adapt a pre-
trained RGB video generation model through several mod-
ifications. The whole pipeline is visualized in Fig. 3.

Firstly, we double the sequence length of noisy input
tokens to enable the model to generate videos of double
length, from x1:L

video to x1:2∗L
video . Here, x1:L

video will be decoded
into the RGB video, while xL+1:2∗L

video will be decoded into
the corresponding alpha video. The Query(Q), Key(K),
Value(V) representations are formulated as:

Z : Z ∈ {Q,K,V}
= [Wz:z∈{q,k,v}(xtext); fz:z∈{q,k,v}(x

1:2∗L
video )]

(4)

In addition to sequence doubling, we explored increasing
batch size or latent dimensions and splitting output into two

domains; however, these approaches showed limited effec-
tiveness under constrained datasets, which we discuss later.

Secondly, we modify the positional encoding function
ft:t∈{q,k,v}(·), as shown in Fig. 4. Instead of continuously
numbering indices, we allow RGB and alpha tokens to share
the same positional encoding. Taking absolute positional
encoding as an example:

f∗z:z∈{q,k,v}(xvideo)

:=

{
Wz:z∈{q,k,v}(x

m
video + pm), if m ≤ L,

W∗
z:z∈{q,k,v}(x

m
video + pm−L + d), if m > L.

(5)

Here we introduce a domain embedding d, initialized
to zero. We make it learnable to help the model adap-
tively differentiate between RGB (m ≤ L) and alpha to-
kens (m > L). The motivation behind this design is we
observe that with same postional encoding, even initializing
with different noises, the tokens from two domains tend to
generate same results. It minimizes spatial-temporal align-
ment challenges at the very beginning of training and thus
accelerates convergence.

Next we propose a fine-tuning scheme using LoRA [23],
in which the LoRA layer is applied only to alpha domain
tokens:

W∗
z:z∈{q,k,v}(x

m
video + pm−L + d)

=Wz:z∈{q,k,v}(x
m
video + pm−L + d)

+ γ · LoRA(xm
video + pm−L + d), if m > L,

(6)
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Figure 4. Positional Encoding Design for RGBA Generation.
Assigning alpha tokens the same positional encoding as RGB
yields similar results, resulting in faster convergence after 1000
iterations compared to standard encoding strategies.

where γ controls the residual strength. Additionally, we de-
sign an attention mask to block unwanted attention compu-
tation. Given a text-video token sequence length Ltext +2L,
where Ltext represents text token length, the mask is defined
as:

M∗
mn =

{
−∞, if m ≤ Ltext and n > Ltext + L,

0, otherwise.
(7)

Combining these modifications, inference with our
method is expressed as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

+M∗
)
V, where

Z : Z ∈ {Q,K,V}
= [Wz:z∈{q,k,v}(xtext); f

∗
z:z∈{q,k,v}(xvideo)]

(8)
Training is carried out using flow matching [33] or a tra-

ditional diffusion process [21].

3.3. Analysis

Given our goal of maximizing the inherited capabilities of
the pretrained video model, enabling it to generate beyond
the existing RGBA training set, we analyze the most critical
component within our current 3D full attention DiT video
generation model: the attention mechanism. The attention
matrix, QKT , has dimensions (Ltext+2∗L)×(Ltext+2∗L),
which we simplify by organizing it into a 3x3 grouped
attention matrix—including Text-attend-to-RGB, RGB-
attend-to-Text, and so forth, as illustrated in Fig. 3.

Text-Attend-to-RGB and RGB-Attend-to-Text. These
represent the upper-left 2x2 section of and are computations
that exist solely in the original RGB generation model. If
we ensure that this part of the computation remains unaf-
fected, we can replicate the original RGB generation per-
formance. Therefore, we limit the scope of LoRA’s influ-
ence, as defined in Eq. (7), by retaining the original QKV
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Figure 5. Attention Rectification. (a) Eliminating all attention
from alpha as a key preserves 100% RGB generation but leads to
poor alignment. (b) Retaining all attention significantly degrades
quality, causing a lack of motion in bicycles. (c) Our method
achieves an effective balance.

values for both text and RGB tokens, thus preserving the
pretrained model’s behavior in these domains.

Besides the partial LoRA, the added alpha tokens re-
quires the text and RGB tokens to also act as queries and
interact with the alpha tokens as keys, which alters the com-
putation in this 2x2 attention matrix. Therefore, we further
analyze two additional attention computations that impact
RGB generation, as shown in Fig. 5.

Text-Attend-to-Alpha. We find that this attention is detri-
mental to the generation quality. Since the model was orig-
inally trained with text and RGB data, introducing atten-
tion from text to alpha causes interference due to the do-
main gap between alpha and RGB. Specifically, the alpha
modality provides only contour information and lacks the
rich texture, color, and semantic details associated with the
text prompt, thereby degrading generation quality. To miti-
gate this, we design the attention mask (Eq. (7)) that blocks
this computation.

RGB-Attend-to-Alpha. In contrast, we identify RGB-to-
Alpha as essential for successful joint generation. This at-
tention allows the model to refine RGB tokens by consider-
ing alpha information, facilitating alignment between gen-
erated RGB and alpha channels. This refinement process is
a critical component missing in previous generation-then-
prediction pipelines, which lacked a feedback mechanism
for RGB refinement based on alpha guidance.

4. Experiment

Training Dataset. We utilize the public VideoMatte240K
dataset [29], a comprehensive collection of 484 high-
resolution green screen videos consists of 240,709 unique
frames of alpha mattes and foregrounds. These frames pro-



“A coin spinning” “A forest floor being consumed by spreading magical fire”

“A cloud of dust erupting and dispersing like an explosion”

“An asteroid belt swirling chaotically through space”“A parrot flying”

“An astronaut running down an alley, spacesuit flapping”

“Water splattering in mid-air”“a woman’s long black hair streaming as she runs”

Input Image Generated RGBA Video Input Image Generated RGBA Video

Figure 6. Applications. Top: Text-to-Video with Transparency. Bottom: Image-to-Video generation with transparency. .

vide a diverse range of human subjects, clothing styles, and
poses. We apply fundamental preprocessing steps for them,
including color decontamination and background blurring.
Prompts are extracted using ShareGPT4V [9].

Model. Our RGBA video diffusion models are developed
by fine-tuning pre-trained diffusion models. Specifically,
we employ two models based on the diffusion transformer
architecture: the open-source model CogVideoX [57] and a
modified variant of CogVideoX denoted as J . CogVideoX
generates RGB videos at a resolution of 480x720 with
49 frames at 8 FPS, using 50 sampling steps. In con-
trast, the modified version produces videos at a resolution
of 176x320 with 64 frames at 24 FPS, while also using
50 sampling steps. Additionally, we integrate our method
with CogVideoX-I2V (Image-to-Video) to support image-
to-video generation with transparency. We set the LoRA
rank to 128. For domain embedding, we initialize it with
an original shape of 1 ×D and zero values, then expand it
to L×D through repetition during training. We train these
parameters over 5,000 iterations with a batch size of 8 in
total, utilizing 8 NVIDIA A100 GPUs.

4.1. Applications

We mainly demonstrate two applications shown in Fig. 6:

Text-to-Video with Transparency. Our method is capable
of generating moving objects with various types of motion,

such as spinning, running, and flying, while also handling
transparent properties of bottles and glasses. Additionally,
it can produce complex visual effects, including fire, explo-
sions, cracking, and lightning, as well as creative examples.

Image-to-Video with Transparency. Our method can
also be integrated with an I2V video generation model-
CogVideoX-I2V. Users can provide a single image along
with an alpha channel (optional), and then we generate
subsequent frames with dynamic effects and automatically
propagate or generate alpha channels for these frames.

4.2. Comparisons

Generation-then-Prediction Pipeline. As shown in Fig. 2,
video matting methods [29, 40, 59] struggle with matting
non-human objects (see supplementary materials for ad-
ditional results). Therefore, we selected Lotus [19] and
SAM-2 [41] as baselines due to their stronger generaliza-
tion: Lotus uses pretrained generative models, and SAM-
2 is trained on large datasets. Since Lotus was originally
designed for single-image depth estimation, we extended it
for RGBA videos, denoted as Lotus + RGBA in our compar-
isons. Qualitative results are shown in Fig. 7. Since ground-
truth alpha channels are not available for generated videos,
we focus on qualitative comparison.

Joint Generation Pipeline. Since there are currently no ex-
isting RGBA video generation models, we integrate Ani-
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Figure 7. Comparison with Generation-then-Prediction Pipelines. Our method demonstrates superior alignment.

“Turning Head”“Running”“Flickering”“Swaying”

Figure 8. Comparison with Joint Generation Pipelines. Top: LayerDiffusion + AnimateDiff; Bottom: Ours. Our method achieves
better alignment and generates corresponding motion described by prompts.

mateDiff [16] with LayerDiffusion [64] to generate RGBA
videos. We use the open-source video generation model
CogVideoX [57] as the base model for fair comparison. The
qualitative results are illustrated in Fig. 8.

User Study. We also conduct a user study with Amazon
Mechanical Turk to compare two joint generation methods,
as shown in Table. 1. Participants are asked to evaluate two
key aspects: 1) whether the RGB and alpha align correctly;
and 2) whether the motion in the generated video matches

Table 1. User Study.

RGBA Alignment Motion Quality

AnimateDiff [16]+LayerDiff [64] 6.7% 21.7%
Ours + CogVideoX [57] 93.3% 78.3%

the corresponding text description. A total of 30 videos are
generated from distinct text prompts, and 87 users partici-
pated in the evaluation. The study shows that our method is
obviously favored more by users with higher votes.
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As shown in Fig. 10, we conduct the ablation study
across two dimensions: attention rectification and network
design.
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Figure 10. Ablation Study. (a) Ours; (b) Ours without RGB-
attend-to-Alpha; (c) Ours with Text-attend-to-alpha; (d) Batch Ex-
tension Strategy; (e) Latent Dimension Extension Strategy. Our
method maintains high-quality motion generation (e.g., butterflies
waving their wings) while achieving good alignment.

Attention Rectification. By blocking RGB-to-Alpha at-
tention, we first validate the importance of RGB-to-Alpha
attention for aligning RGB and alpha channels, a feature
lacking in most prediction-based methods. We also exam-
ine the effect of removing unnecessary attention to preserve
the model’s generative capacity, by learning Text-to-Alpha
attention only. Without RGB-to-Alpha attention, the alpha
channel misaligns with RGB content and the RGB output
loses motion quality (e.g., reverse rocket).

Alternative Designs For Joint Generation. Given the
transformer’s input dimensions B × L ×D, we extend the
sequence dimension L to produce RGB and alpha channels,

Figure 11. Quantitative Evaluation. Our approach achieves a
good balance between alignment (low flow difference) and pre-
serving generative quality (low FVD).

but alternative extensions are possible at the Batch B or La-
tent Dimension D levels (see Fig. 9). In the Batch Ex-
tension approach, a new module enables inter-batch com-
munication, similar to the technique in [46]. For Latent
Dimension Extension, we merge video and alpha tokens,
project them into the DiT model’s latent space, and un-
merge post-generation, using learnable linear layers with
fine-tuning. Batch Extension shows weaker RGB-alpha
alignment, while Latent Dimension Extension, though akin
to training from scratch, significantly reduces diversity.

Evaluation. In addition to the qualitative comparisons
shown in Fig. 10, we also generated a total of 80 videos,
each consisting of 64 frames, and evaluated them using two
primary metrics: Flow Difference. To measure alignment
between the generated RGB and Alpha videos, we use op-
tical flow [22] to focus on motion consistency while ig-
noring appearance. Specifically, we calculate optical flow
with Farneback method [12] and compute the flow differ-
ence as the average Euclidean distance between RGB and
Alpha flow fields. Frechét Video Distance (FVD). We use
FVD [45] to compare the RGB videos generated by each
RGBA method against those from the original RGB model,
evaluating how well each method preserves the model’s
original generative quality. A lower FVD indicates that the
generated results are closer to the original RGB model in
terms of motion coherence and diversity, thus demonstrat-
ing a high fidelity to the model’s intended generative qual-
ity. Results are shown in Fig. 11.

5. Conclusion
In this work, we present a novel approach for Text-to-
RGBA video generation, extending RGB generation mod-
els to support RGBA output with minimal modification and
high fidelity. By leveraging transformer-based DiT mod-
els and optimizing attention mechanisms specific to RGBA
generation, our method effectively balances the preserva-
tion of RGB quality with the accurate generation of alpha
channels. Our approach demonstrates that targeted mod-
ifications—such as the addition of alpha tokens, reinitial-
ization of positional embeddings, and selective LoRA fine-



tuning—can yield complex and high-quality RGBA outputs
even with limited data. Extensive experimental results val-
idate our framework, showing its versatility and robustness
across diverse scenarios. Looking forward, we aim to ex-
plore further optimizations to reduce computational costs
and enhance model scalability.
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6. Limitations

Our DiT-based method for RGBA generation incurs
quadratic computational costs due to sequence expansion.
However, our method achieves an optimal balance be-
tween generation and alignment when trained with a lim-
ited dataset. Numerous studies [11, 49, 66] have addressed
the computational overhead of long sequences, with many
optimizations reducing complexity to a linear scale. To en-
hance the efficiency of our method, we plan to incorporate
these optimizations in future work. Additionally, our per-
formance is influenced by the generative priors provided by
the chosen T2V model, which affects the quality and con-
sistency of our outputs.

7. Comparisons with Video Matting

We compare our method with video matting methods Bi-
Matting [40] and Robust Video Matting (RVM) [30], as well
as the image matting method Matte-Anything [59]. From
the results, it is evident that most methods, trained on the
VideoMatte240k [29] dataset, struggle to produce valid out-
puts for non-human objects, often resulting in empty results.
Even image matting methods trained on large-scale datasets
fail to handle certain visual effects correctly. Results are
shown in the attached HTML source files.

8. Data Preprocessing

Color Decontamination. In our method, we preprocess
the training data by applying a color decontamination step
to enhance the quality of the RGBA video generation.
Color contamination typically occurs when there is an un-
desired blending of foreground and background colors, es-
pecially along the edges of an object, due to imperfect al-
pha masks. This blending causes color bleeding, where the
foreground and background colors mix, resulting in lower
quality RGBA frames with inaccurate color representation.
To address this issue, we refine the alpha mask using pa-
rameters such as gain (γ = 1.1) and choke (χ = 0.5) to
adjust the sharpness and influence of the mask edges. The
decontaminated RGB values are then computed as follows:

RGBdecon = RGB×(1−maskrefined)+maskrefined×Background

This equation ensures that unwanted color contamina-
tion is minimized, providing a more precise distinction be-
tween foreground and background regions. By perform-
ing this preprocessing step, we generate high-quality train-

ing data that significantly improves the performance of our
RGBA video generation model.
Background Blurring. Unlike typical training strategies in
video matting methods, where objects are composited with
complex backgrounds to increase the difficulty of the task,
our goal is to support joint generation of alpha and RGB
channels while ensuring alignment between them. Instead
of emphasizing complex matting, we focus on generating
consistent and high-quality output by compositing objects
with simple, static backgrounds that match the black areas
in the alpha channel. Specifically, we apply a large Gaus-
sian blur kernel of size 201 to the first frame to create a
blurred background and blend each subsequent frame with
this static background. This approach helps simplify the
training conditions, allowing the model to better align the
RGB and alpha components while maintaining high-quality
output.

9. Optical Flow Difference

To evaluate the alignment between the RGB and alpha chan-
nels in generated videos, we introduce a metric based on
optical flow difference. Optical flow measures the apparent
motion of objects between consecutive frames, and compar-
ing the optical flow fields of RGB and alpha frames pro-
vides insight into the consistency of motion across these
modalities. Specifically, we use the Farneback method
(cv::calcOpticalFlowFarneback) to compute the
optical flow for both RGB and alpha frames, and then calcu-
late the average Euclidean distance between their flow vec-
tors as a measure of misalignment. This approach quanti-
fies the degree to which the RGB and alpha channels align
in terms of motion.
Pseudo Code Overview:
1. Load consecutive RGB and alpha frames from the in-

put video.
2. Convert the frames to grayscale for optical flow com-

putation, as optical flow is typically calculated on inten-
sity values.

3. Compute optical flow using the Farneback method
(cv::calcOpticalFlowFarneback) for both the
RGB and alpha frames.

4. Calculate the Euclidean distance between the RGB
and alpha flow vectors for each pixel.

5. Average the differences across all pixels and frames to
obtain the final optical flow difference.
The average optical flow difference provides a quantita-

tive metric for evaluating the alignment between RGB and
alpha channels, helping to ensure that both modalities ex-



hibit consistent motion.

10. Video Results
For all video results shown in the main paper, please see the
attached HTML source files.

11. Additional Visual Results
In addition to the video results in the main paper, we pro-
vide more generated results in the supplementary files, in-
cluding various objects and visual effects. Please find the
corresponding results in the supplementary files.
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